confint_1group
A range of functions to compute bootstraps for a single sample.
summary_ci_1group
summary_ci_1group (x:<built-infunctionarray>, func, resamples:int=5000, alpha:float=0.05, random_seed:int=12345, sort_bootstraps:bool=True, *args, **kwargs)
Given an array-like x, returns func(x), and a bootstrap confidence interval of func(x).
| Type | Default | Details | |
|---|---|---|---|
| x | array | An numerical iterable. | |
| func | The function to be applied to x. | ||
| resamples | int | 5000 | The number of bootstrap resamples to be taken of func(x). |
| alpha | float | 0.05 | Denotes the likelihood that the confidence interval produced does not include the true summary statistic. When alpha = 0.05, a 95% confidence interval is produced. |
| random_seed | int | 12345 | random_seed is used to seed the random number generator during bootstrap resampling. This ensures that the confidence intervals reported are replicable. |
| sort_bootstraps | bool | True | |
| args | VAR_POSITIONAL | ||
| kwargs | VAR_KEYWORD | ||
| Returns | A dictionary with the following five keys: | summary: float.The outcome of func(x). func: function.The function applied to x. bca_ci_low: floatbca_ci_high: float.The bias-corrected and accelerated confidence interval, for the given alpha. bootstraps: array.The bootstraps used to generate the confidence interval. These will be sorted in ascending order if sort_bootstrapswas True. |
compute_1group_bias_correction
compute_1group_bias_correction (x, bootstraps, func, *args, **kwargs)
compute_1group_bootstraps
compute_1group_bootstraps (x, func, resamples=5000, random_seed=12345, *args, **kwargs)
Bootstraps func(x), with the number of specified resamples.
compute_1group_acceleration
compute_1group_acceleration (jack_dist)
Returns the accaleration value based on the jackknife distribution.
compute_1group_jackknife
compute_1group_jackknife (x, func, *args, **kwargs)
Returns the jackknife bootstraps for func(x).
create_bootstrap_indexes
create_bootstrap_indexes (array, resamples=5000, random_seed=12345)
Given an array-like, returns a generator of bootstrap indexes to be used for resampling.