confint_1group

A range of functions to compute bootstraps for a single sample.

source

summary_ci_1group

 summary_ci_1group (x:<built-infunctionarray>, func, resamples:int=5000,
                    alpha:float=0.05, random_seed:int=12345,
                    sort_bootstraps:bool=True, *args, **kwargs)

Given an array-like x, returns func(x), and a bootstrap confidence interval of func(x).

Type Default Details
x np.array An numerical iterable.
func The function to be applied to x.
resamples int 5000 The number of bootstrap resamples to be taken of func(x).
alpha float 0.05 Denotes the likelihood that the confidence interval produced does not include the true summary statistic. When alpha = 0.05, a 95% confidence interval is produced.
random_seed int 12345 random_seed is used to seed the random number generator during bootstrap resampling. This ensures that the confidence intervals reported are replicable.
sort_bootstraps bool True
args
kwargs
Returns A dictionary with the following five keys: summary: float.
The outcome of func(x).
func: function.
The function applied to x.
bca_ci_low: float
bca_ci_high: float.
The bias-corrected and accelerated confidence interval, for the
given alpha.
bootstraps: array.
The bootstraps used to generate the confidence interval.
These will be sorted in ascending order if sort_bootstraps
was True.

source

compute_1group_bias_correction

 compute_1group_bias_correction (x, bootstraps, func, *args, **kwargs)

source

compute_1group_bootstraps

 compute_1group_bootstraps (x, func, resamples=5000, random_seed=12345,
                            *args, **kwargs)

Bootstraps func(x), with the number of specified resamples.


source

compute_1group_acceleration

 compute_1group_acceleration (jack_dist)

Returns the accaleration value based on the jackknife distribution.


source

compute_1group_jackknife

 compute_1group_jackknife (x, func, *args, **kwargs)

Returns the jackknife bootstraps for func(x).


source

create_bootstrap_indexes

 create_bootstrap_indexes (array, resamples=5000, random_seed=12345)

Given an array-like, returns a generator of bootstrap indexes to be used for resampling.