plot_tools

A set of convenience functions used for producing plots in dabest.

source

add_counts_to_prop_plots

 add_counts_to_prop_plots (plot_data:pandas.core.frame.DataFrame,
                           xvar:str, yvar:str,
                           rawdata_axes:matplotlib.axes._axes.Axes,
                           horizontal:bool, is_paired:bool,
                           prop_sample_counts_kwargs:dict)

Add counts to the proportion plots.

Type Details
plot_data DataFrame Dataframe of the plot data.
xvar str Column name of the x variable.
yvar str Column name of the y variable.
rawdata_axes Axes Matplotlib axis object to plot on.
horizontal bool If the plot is horizontal.
is_paired bool Whether the data is paired.
prop_sample_counts_kwargs dict Keyword arguments for the sample counts.

source

table_for_horizontal_plots

 table_for_horizontal_plots (effectsize_df:object,
                             ax:matplotlib.axes._axes.Axes,
                             contrast_axes:matplotlib.axes._axes.Axes,
                             ticks_to_plot:list, show_mini_meta:bool,
                             show_delta2:bool, table_kwargs:dict,
                             ticks_to_skip:list)

Add table axes for showing the deltas for horizontal plots.

Type Details
effectsize_df object Effect size DABEST object.
ax Axes Matplotlib axis object to plot the table axes.
contrast_axes Axes Matplotlib axis object to plot the contrast axes.
ticks_to_plot list List of indices of the contrast objects.
show_mini_meta bool Whether to show the mini meta-analysis.
show_delta2 bool Whether to show the delta-delta.
table_kwargs dict Keyword arguments for the table.
ticks_to_skip list

source

barplotter

 barplotter (xvar:str, yvar:str, all_plot_groups:list,
             rawdata_axes:matplotlib.axes._axes.Axes,
             plot_data:pandas.core.frame.DataFrame, raw_colors:str,
             plot_palette_raw:dict, color_col:str, barplot_kwargs:dict,
             horizontal:bool)

Add bars to the raw data plot.

Type Details
xvar str Column name of the x variable.
yvar str Column name of the y variable.
all_plot_groups list List of all plot groups.
rawdata_axes Axes Matplotlib axis object to plot on.
plot_data DataFrame Dataframe of the plot data.
raw_colors str Color of the bar.
plot_palette_raw dict Dictionary of colors used in the bar plot.
color_col str Column name of the color column.
barplot_kwargs dict Keyword arguments for the barplot.
horizontal bool If the plot is horizontal.

source

gridkey_plotter

 gridkey_plotter (is_paired:bool, idx:list, all_plot_groups:list,
                  gridkey:list, rawdata_axes:matplotlib.axes._axes.Axes,
                  contrast_axes:matplotlib.axes._axes.Axes,
                  plot_data:pandas.core.frame.DataFrame, xvar:str,
                  yvar:str, results:pandas.core.frame.DataFrame,
                  show_delta2:bool, show_mini_meta:bool, x1_level:list,
                  experiment_label:list, float_contrast:bool,
                  horizontal:bool, delta_delta:object, mini_meta:object,
                  effect_size:str, gridkey_kwargs:dict)

Add gridkey to the contrast plot.

Type Details
is_paired bool Whether the data is paired.
idx list List of indices of the contrast objects.
all_plot_groups list List of all plot groups.
gridkey list List of gridkey rows.
rawdata_axes Axes Matplotlib axis object for the raw data.
contrast_axes Axes Matplotlib axis object for the contrast data.
plot_data DataFrame Dataframe of the plot data.
xvar str Column name of the x variable.
yvar str Column name of the y variable.
results DataFrame Dataframe of contrast object comparisons.
show_delta2 bool Whether to show the delta-delta.
show_mini_meta bool Whether to show the mini meta-analysis.
x1_level list List of x1 levels.
experiment_label list List of experiment labels.
float_contrast bool Whether the DABEST plot uses Gardner-Altman or Cummings
horizontal bool If the plot is horizontal.
delta_delta object delta-delta object.
mini_meta object Mini meta-analysis object.
effect_size str Type of effect size to plot
gridkey_kwargs dict Keyword arguments for the gridkey.

source

effect_size_curve_plotter

 effect_size_curve_plotter (ticks_to_plot:list,
                            ticks_for_baseline_ec:list,
                            results:pandas.core.frame.DataFrame,
                            ci_type:str,
                            contrast_axes:matplotlib.axes._axes.Axes,
                            contrast_kwargs:dict,
                            bootstraps_color_by_group:bool,
                            plot_palette_contrast:dict, horizontal:bool,
                            contrast_marker_kwargs:dict,
                            contrast_errorbar_kwargs:dict, idx:list,
                            is_paired:bool, contrast_paired_lines:bool,
                            contrast_paired_lines_kwargs:dict,
                            show_baseline_ec:bool=False)

Add effect size curves to the contrast plot.

Type Default Details
ticks_to_plot list List of indices of the contrast objects.
ticks_for_baseline_ec list List of indices of the baseline effect curve objects.
results DataFrame Dataframe of contrast object comparisons.
ci_type str Type of confidence interval to plot.
contrast_axes Axes Matplotlib axis object to plot on.
contrast_kwargs dict Keyword arguments for the violinplot.
bootstraps_color_by_group bool Whether to color the bootstraps by group.
plot_palette_contrast dict Dictionary of colors used in the contrast plot.
horizontal bool If the plot is horizontal.
contrast_marker_kwargs dict
contrast_errorbar_kwargs dict
idx list List of indices of the raw groups.
is_paired bool Whether the data is paired.
contrast_paired_lines bool Whether to add lines for repeated measures data.
contrast_paired_lines_kwargs dict Keyword arguments for the repeated measures lines.
show_baseline_ec bool False Whether to show the baseline effect curve.

source

plot_minimeta_or_deltadelta_violins

 plot_minimeta_or_deltadelta_violins (dabest_obj:object, type:str,
                                      ci_type:str, rawdata_axes:matplotlib
                                      .axes._axes.Axes, contrast_axes:matp
                                      lotlib.axes._axes.Axes,
                                      contrast_kwargs:dict,
                                      contrast_xtick_labels:list,
                                      effect_size:str, plot_kwargs:dict,
                                      horizontal:bool, show_pairs:bool,
                                      contrast_marker_kwargs:dict,
                                      contrast_errorbar_kwargs:dict)

Add mini meta-analysis or delta-delta violin plots to the contrast plot.

Type Details
dabest_obj object DABEST Effectsize object delta-delta or mini_meta
type str
ci_type str Type of confidence interval to plot.
rawdata_axes Axes Matplotlib axis object to plot on.
contrast_axes Axes Matplotlib axis object to plot on.
contrast_kwargs dict Keyword arguments for the violinplot.
contrast_xtick_labels list List of xtick labels for the contrast plot.
effect_size str Type of effect size to plot.
plot_kwargs dict Keyword arguments for the plot.
horizontal bool If the plot is horizontal.
show_pairs bool Whether the data is paired and shown in pairs.
contrast_marker_kwargs dict
contrast_errorbar_kwargs dict

source

slopegraph_plotter

 slopegraph_plotter (dabest_obj:object,
                     plot_data:pandas.core.frame.DataFrame, xvar:str,
                     yvar:str, color_col:str, plot_palette_raw:dict,
                     slopegraph_kwargs:dict,
                     rawdata_axes:matplotlib.axes._axes.Axes,
                     ytick_color:str, temp_idx:list, horizontal:bool,
                     temp_all_plot_groups:list, plot_kwargs:dict)

Add slopegraph to the rawdata axes.

Type Details
dabest_obj object DABEST object.
plot_data DataFrame Dataframe of the plot data.
xvar str Column name of the x variable.
yvar str Column name of the y variable.
color_col str Column name of the color column.
plot_palette_raw dict Dictionary of colors used in the plot.
slopegraph_kwargs dict Keyword arguments for the slopegraph.
rawdata_axes Axes Matplotlib axis object to plot on.
ytick_color str Color of the yticks.
temp_idx list List of indices of the contrast objects.
horizontal bool If the plotting will be in horizontal format.
temp_all_plot_groups list List of all plot groups.
plot_kwargs dict Keyword arguments for the plot.

source

delta_dots_plotter

 delta_dots_plotter (plot_data:pandas.core.frame.DataFrame,
                     contrast_axes:matplotlib.axes._axes.Axes,
                     delta_id_col:str, idx:list, xvar:str, yvar:str,
                     is_paired:bool, color_col:str, float_contrast:bool,
                     plot_palette_raw:dict, delta_dot_kwargs:dict,
                     horizontal:bool)
Type Details
plot_data DataFrame Dataframe of the plot data.
contrast_axes Axes Matplotlib axis object to plot on.
delta_id_col str Column name of the delta id column.
idx list List of indices of the contrast objects.
xvar str Column name of the x variable.
yvar str Column name of the y variable.
is_paired bool Whether the data is paired.
color_col str Column name of the color column.
float_contrast bool Whether the DABEST plot uses Gardner-Altman or Cummings
plot_palette_raw dict Dictionary of colors used in the plot.
delta_dot_kwargs dict Keyword arguments for the delta dots.
horizontal bool If the rawplot is horizontal.

source

delta_text_plotter

 delta_text_plotter (results:pandas.core.frame.DataFrame,
                     ax_to_plot:object, ticks_to_plot:list,
                     delta_text_kwargs:dict, color_col:str,
                     plot_palette_raw:dict, show_pairs:bool,
                     float_contrast:bool, extra_delta:float)

Add delta text to the contrast plot.

Type Details
results DataFrame Dataframe of contrast object comparisons.
ax_to_plot object Matplotlib axis object to plot on.
ticks_to_plot list List of indices of the contrast objects.
delta_text_kwargs dict Keyword arguments for the delta text.
color_col str Column name of the color column.
plot_palette_raw dict Dictionary of colors used in the plot.
show_pairs bool Whether the data is paired and show pairs.
float_contrast bool Whether the DABEST plot uses Gardner-Altman or Cummings.
extra_delta float The extra mini-meta or delta-delta value if applicable.

source

add_bars_to_plot

 add_bars_to_plot (bar_dict:dict, ax:matplotlib.axes._axes.Axes,
                   bar_kwargs:dict)

Add bars to the relevant axes.

Type Details
bar_dict dict Dictionary of bar values.
ax Axes Matplotlib axis object to plot on.
bar_kwargs dict Keyword arguments for the bars.

source

sankeydiag

 sankeydiag (data:pandas.core.frame.DataFrame, xvar:str, yvar:str,
             temp_all_plot_groups:list, idx:list, temp_idx:list,
             left_labels:list=None, right_labels:list=None,
             palette:str|dict=None, ax=None, flow:bool=True,
             sankey:bool=True, one_sankey:bool=False, width:float=0.4,
             right_color:bool=False, align:str='center', alpha:float=0.65,
             horizontal:bool=False, **kwargs)

Read in melted pd.DataFrame, and draw multiple sankey diagram on a single axes using the value in column yvar according to the value in column xvar left_idx in the column xvar is on the left side of each sankey diagram right_idx in the column xvar is on the right side of each sankey diagram

Type Default Details
data DataFrame
xvar str x column to be plotted.
yvar str y column to be plotted.
temp_all_plot_groups list
idx list
temp_idx list
left_labels list None labels for the left side of the diagram. The diagram will be sorted by these labels.
right_labels list None labels for the right side of the diagram. The diagram will be sorted by these labels.
palette str | dict None
ax NoneType None matplotlib axes to be drawn on
flow bool True if True, draw the sankey in a flow, else draw 1 vs 1 Sankey diagram for each group comparison
sankey bool True if True, draw the sankey diagram, else draw barplot
one_sankey bool False determined by the driver function on plotter.py, if True, draw the sankey diagram across the whole raw data axes
width float 0.4 the width of each sankey diagram
right_color bool False if True, each strip of the diagram will be colored according to the corresponding left labels
align str center the alignment of each sankey diagram, can be ‘center’ or ‘left’
alpha float 0.65 the transparency of each strip
horizontal bool False if True, the horizontal format for the sankey diagram will be used
kwargs VAR_KEYWORD

source

single_sankey

 single_sankey (left:<built-infunctionarray>, right:<built-
                infunctionarray>, xpos:float=0, left_weight:<built-
                infunctionarray>=None, right_weight:<built-
                infunctionarray>=None, colorDict:dict=None,
                left_labels:list=None, right_labels:list=None, ax=None,
                flow:bool=True, sankey:bool=True, width=0.5, alpha=0.65,
                bar_width=0.2, error_bar_on:bool=True, strip_on:bool=True,
                one_sankey:bool=False, right_color:bool=False,
                align:str='center', horizontal:bool=False)

*Make a single Sankey diagram showing proportion flow from left to right

Original code from: https://github.com/anazalea/pySankey

Changes are added to normalize each diagram’s height to be 1*

Type Default Details
left array data on the left of the diagram
right array data on the right of the diagram, len(left) == len(right)
xpos float 0 the starting point on the x-axis
left_weight array None weights for the left labels, if None, all weights are 1
right_weight array None weights for the right labels, if None, all weights are corresponding left_weight
colorDict dict None input format: {‘label’: ‘color’}
left_labels list None labels for the left side of the diagram. The diagram will be sorted by these labels.
right_labels list None labels for the right side of the diagram. The diagram will be sorted by these labels.
ax NoneType None matplotlib axes to be drawn on
flow bool True if True, draw the sankey in a flow, else draw 1 vs 1 Sankey diagram for each group comparison
sankey bool True if True, draw the sankey diagram, else draw barplot
width float 0.5
alpha float 0.65
bar_width float 0.2
error_bar_on bool True if True, draw error bar for each group comparison
strip_on bool True if True, draw strip for each group comparison
one_sankey bool False if True, only draw one sankey diagram
right_color bool False if True, each strip of the diagram will be colored according to the corresponding left labels
align str center if ‘center’, the diagram will be centered on each xtick, if ‘edge’, the diagram will be aligned with the left edge of each xtick
horizontal bool False if True, the horizontal format for the sankey diagram will be used

source

width_determine

 width_determine (labels, data, pos='left')

*Calculates normalized width positions for a set of labels based on their associated data.

This function is designed to determine width positions for plotting or graphical representation. It takes into account the cumulative weight of each label in the data and adjusts their positions accordingly. The function allows for adjusting the position of labels to either the ‘left’ or ‘right’.

Parameters: labels (list): A list of labels whose width positions are to be calculated. data (DataFrame): A pandas DataFrame containing the data used for calculating width positions. The DataFrame should have columns corresponding to the ‘pos’ and ‘posWeight’. pos (str, optional): The position of labels. It can be either ‘left’ or ‘right’. Defaults to ‘left’.

Returns: defaultdict: A dictionary where each key is a label and the value is another dictionary with keys ‘bottom’, ‘top’, and ‘pos’, representing the calculated width positions.

Note: The function assumes that the data DataFrame contains columns named after the value of ‘pos’ and an additional column named ‘posWeight’ which represents the weight of each label.*


source

normalize_dict

 normalize_dict (nested_dict, target)

*Normalizes the values in a nested dictionary based on a target dictionary.

This function iterates through a nested dictionary, calculates the sum of values for each key across all sub-dictionaries, and then normalizes these values according to a target dictionary. The normalization is performed such that the values in each sub-dictionary are proportionally scaled to match the corresponding ‘right’ values in the target dictionary.

Parameters: nested_dict (dict of dict): A nested dictionary where each key maps to another dictionary. The values in these inner dictionaries are subject to normalization. target (dict): A dictionary with the target values for normalization. Each key in nested_dict should have a corresponding key in target, and each target[key] should be a dictionary with a ‘right’ key containing the target normalization value.

Returns: dict: The normalized nested dictionary. The original nested_dict is modified in place.

Note: - If the sum of values for a particular key in nested_dict is zero, the normalized value is set to 0. - If a key in a sub-dictionary of nested_dict does not exist in the target dictionary, the corresponding ‘right’ value from the target dictionary is directly assigned. - The function modifies the input nested_dict in place and also returns it.*


source

check_data_matches_labels

 check_data_matches_labels (labels, data, side:str)

Function to check that the labels and data match in the sankey diagram. And enforce labels and data to be lists. Raises an exception if the labels and data do not match.

Type Details
labels list of input labels
data Pandas Series of input data
side str ‘left’ or ‘right’ on the sankey diagram

source

error_bar

 error_bar (data:pandas.core.frame.DataFrame, x:str, y:str,
            type:str='mean_sd', offset:float=0.2, ax=None,
            line_color='black', gap_width_percent=1, pos:list=[0, 1],
            method:str='gapped_lines', horizontal:bool=False,
            **kwargs:dict)

*Function to plot the standard deviations as vertical errorbars. The mean is a gap defined by negative space.

This function combines the functionality of gapped_lines(), proportional_error_bar(), and sankey_error_bar().*

Type Default Details
data DataFrame This DataFrame should be in ‘long’ format.
x str x column to be plotted.
y str y column to be plotted.
type str mean_sd Choose from [‘mean_sd’, ‘median_quartiles’]. Plots the summary statistics for each group. If ‘mean_sd’, then the mean and standard deviation of each group is plotted as a gapped line. If ‘median_quantiles’, then the median and 25th and 75th percentiles of each group is plotted instead.
offset float 0.2 Give a single float (that will be used as the x-offset of all gapped lines), or an iterable containing the list of x-offsets.
ax NoneType None If a matplotlib Axes object is specified, the gapped lines will be plotted in order on this axes. If None, the current axes (plt.gca()) is used.
line_color str black The color of the gapped lines.
gap_width_percent int 1 The width of the gap in the gapped lines, as a percentage of the y-axis span.
pos list [0, 1]
method str gapped_lines The method to use for drawing the error bars. Options are: ‘gapped_lines’, ‘proportional_error_bar’, and ‘sankey_error_bar’.
horizontal bool False If True, the error bars will be horizontal. If False, the error bars will be vertical.
kwargs dict

source

get_swarm_spans

 get_swarm_spans (coll)

Given a matplotlib Collection, will obtain the x and y spans for the collection. Will return None if this fails.


source

halfviolin

 halfviolin (v, half='right', fill_color='k', alpha=1, line_color='k',
             line_width=0)

source

SwarmPlot

 SwarmPlot (data:pandas.core.frame.DataFrame, x:str, y:str,
            ax:matplotlib.axes._axes.Axes, order:List=None, hue:str=None,
            palette:Union[Iterable,str]='black', zorder:float=1,
            size:float=5, side:str='center', jitter:float=1,
            horizontal:bool=False)

Initialize a SwarmPlot instance.

Type Default Details
data DataFrame The input data as a pandas DataFrame.
x str The column in the DataFrame to be used as the x-axis.
y str The column in the DataFrame to be used as the y-axis.
ax Axes Matplotlib axes.Axes object for which the plot would be drawn on.
order List None The order in which x-axis categories should be displayed. Default is None.
hue str None The column in the DataFrame that determines the grouping for color.
If None (by default), it assumes that it is being grouped by x.
palette Union black The color palette to be used for plotting. Default is “black”.
zorder float 1 The z-order for drawing the swarm plot wrt other matplotlib drawings. Default is 1.
size float 5
side str center The side on which points are swarmed (“center”, “left”, or “right”). Default is “center”.
jitter float 1 Determines the distance between points. Default is 1.
horizontal bool False If True, the swarm plot is drawn horizontally. Default is False.
Returns None

source

swarmplot

 swarmplot (data:pandas.core.frame.DataFrame, x:str, y:str,
            ax:matplotlib.axes._axes.Axes, order:List=None, hue:str=None,
            palette:Union[Iterable,str]='black', zorder:float=1,
            size:float=5, side:str='center', jitter:float=1,
            filled:Union[bool,List,Tuple]=True, is_drop_gutter:bool=True,
            gutter_limit:float=0.5, horizontal:bool=False, **kwargs)

API to plot a swarm plot.

Type Default Details
data DataFrame The input data as a pandas DataFrame.
x str The column in the DataFrame to be used as the x-axis.
y str The column in the DataFrame to be used as the y-axis.
ax Axes Matplotlib axes.Axes object for which the plot would be drawn on. Default is None.
order List None The order in which x-axis categories should be displayed. Default is None.
hue str None The column in the DataFrame that determines the grouping for color.
If None (by default), it assumes that it is being grouped by x.
palette Union black The color palette to be used for plotting. Default is “black”.
zorder float 1 The z-order for drawing the swarm plot wrt other matplotlib drawings. Default is 1.
size float 5
side str center The side on which points are swarmed (“center”, “left”, or “right”). Default is “center”.
jitter float 1 Determines the distance between points. Default is 1.
filled Union True Determines whether the dots in the swarmplot are filled or not. If set to False,
dots are not filled. If provided as a List or Tuple, it should contain boolean values,
each corresponding to a swarm group in order, indicating whether the dot should be
filled or not.
is_drop_gutter bool True If True, drop points that hit the gutters; otherwise, readjust them.
gutter_limit float 0.5 The limit for points hitting the gutters.
horizontal bool False If True, the swarm plot is drawn horizontally. Default is False.
kwargs VAR_KEYWORD
Returns axes.Axes Matplotlib axes.Axes object for which the swarm plot has been drawn on.