confint_2group_diff

A range of functions to compute bootstraps for the mean difference

source

calculate_weighted_delta

 calculate_weighted_delta (group_var, differences)

Compute the weighted deltas.


source

calculate_group_var

 calculate_group_var (control_var, control_N, test_var, test_N)

source

compute_interval_limits

 compute_interval_limits (bias, acceleration, n_boots, ci=95)

Returns the indexes of the interval limits for a given bootstrap.

Supply the bias, acceleration factor, and number of bootstraps.


source

compute_meandiff_bias_correction

 compute_meandiff_bias_correction (bootstraps, effsize)

Computes the bias correction required for the BCa method of confidence interval construction.

Type Details
bootstraps An numerical iterable, comprising bootstrap resamples of the effect size.
effsize The effect size for the original sample.
Returns bias: numeric The bias correction value for the given bootstraps
and effect size.

source

compute_delta2_bootstrapped_diff

 compute_delta2_bootstrapped_diff (x1:numpy.ndarray, x2:numpy.ndarray,
                                   x3:numpy.ndarray, x4:numpy.ndarray,
                                   is_paired:str=None, resamples:int=5000,
                                   random_seed:int=12345)

Bootstraps the effect size deltas’ g.

Type Default Details
x1 np.ndarray Control group 1
x2 np.ndarray Test group 1
x3 np.ndarray Control group 2
x4 np.ndarray Test group 2
is_paired str None
resamples int 5000 The number of bootstrap resamples to be taken for the calculation of the confidence interval limits.
random_seed int 12345 random_seed is used to seed the random number generator during bootstrap resampling. This ensures that the confidence intervals reported are replicable.
Returns tuple

source

compute_bootstrapped_diff

 compute_bootstrapped_diff (x0, x1, is_paired, effect_size,
                            resamples=5000, random_seed=12345)

Bootstraps the effect_size for 2 groups.


source

compute_meandiff_jackknife

 compute_meandiff_jackknife (x0, x1, is_paired, effect_size)

Given two arrays, returns the jackknife for their effect size.


source

create_repeated_indexes

 create_repeated_indexes (data)

Convenience function. Given an array-like with length N, returns a generator that yields N indexes [0, 1, …, N].

/opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/fastcore/docscrape.py:225: UserWarning: Unknown section Keywords
  else: warn(msg)

source

create_jackknife_indexes

 create_jackknife_indexes (data)

Given an array-like, creates a jackknife bootstrap.

For a given set of data Y, the jackknife bootstrap sample J[i] is defined as the data set Y with the ith data point deleted.

Type Details
data
Returns Generator that yields all jackknife bootstrap samples.