confint_2group_diff
A range of functions to compute bootstraps for the mean difference
calculate_weighted_delta
calculate_weighted_delta (group_var, differences)
Compute the weighted deltas.
calculate_group_var
calculate_group_var (control_var, control_N, test_var, test_N)
compute_interval_limits
compute_interval_limits (bias, acceleration, n_boots, ci=95)
Returns the indexes of the interval limits for a given bootstrap.
Supply the bias, acceleration factor, and number of bootstraps.
compute_meandiff_bias_correction
compute_meandiff_bias_correction (bootstraps, effsize)
Computes the bias correction required for the BCa method of confidence interval construction.
Type | Details | |
---|---|---|
bootstraps | An numerical iterable, comprising bootstrap resamples of the effect size. | |
effsize | The effect size for the original sample. | |
Returns | bias: numeric | The bias correction value for the given bootstraps and effect size. |
compute_delta2_bootstrapped_diff
compute_delta2_bootstrapped_diff (x1:numpy.ndarray, x2:numpy.ndarray, x3:numpy.ndarray, x4:numpy.ndarray, is_paired:str=None, resamples:int=5000, random_seed:int=12345)
Bootstraps the effect size deltas’ g.
Type | Default | Details | |
---|---|---|---|
x1 | np.ndarray | Control group 1 | |
x2 | np.ndarray | Test group 1 | |
x3 | np.ndarray | Control group 2 | |
x4 | np.ndarray | Test group 2 | |
is_paired | str | None | |
resamples | int | 5000 | The number of bootstrap resamples to be taken for the calculation of the confidence interval limits. |
random_seed | int | 12345 | random_seed is used to seed the random number generator during bootstrap resampling. This ensures that the confidence intervals reported are replicable. |
Returns | tuple |
compute_bootstrapped_diff
compute_bootstrapped_diff (x0, x1, is_paired, effect_size, resamples=5000, random_seed=12345)
Bootstraps the effect_size for 2 groups.
compute_meandiff_jackknife
compute_meandiff_jackknife (x0, x1, is_paired, effect_size)
Given two arrays, returns the jackknife for their effect size.
create_repeated_indexes
create_repeated_indexes (data)
Convenience function. Given an array-like with length N, returns a generator that yields N indexes [0, 1, …, N].
/opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/fastcore/docscrape.py:225: UserWarning: Unknown section Keywords
else: warn(msg)
create_jackknife_indexes
create_jackknife_indexes (data)
Given an array-like, creates a jackknife bootstrap.
For a given set of data Y, the jackknife bootstrap sample J[i] is defined as the data set Y with the ith data point deleted.
Type | Details | |
---|---|---|
data | ||
Returns | Generator that yields all jackknife bootstrap samples. |