confint_2group_diff
calculate_weighted_delta
calculate_weighted_delta (group_var, differences)
Compute the weighted deltas.
calculate_group_var
calculate_group_var (control_var, control_N, test_var, test_N)
compute_interval_limits
compute_interval_limits (bias, acceleration, n_boots, ci=95)
*Returns the indexes of the interval limits for a given bootstrap.
Supply the bias, acceleration factor, and number of bootstraps.*
compute_meandiff_bias_correction
compute_meandiff_bias_correction (bootstraps, effsize)
Computes the bias correction required for the BCa method of confidence interval construction.
Type | Details | |
---|---|---|
bootstraps | An numerical iterable, comprising bootstrap resamples of the effect size. | |
effsize | The effect size for the original sample. | |
Returns | bias: numeric | The bias correction value for the given bootstraps and effect size. |
compute_delta2_bootstrapped_diff
compute_delta2_bootstrapped_diff (x1:numpy.ndarray, x2:numpy.ndarray, x3:numpy.ndarray, x4:numpy.ndarray, is_paired:str=None, resamples:int=5000, random_seed:int=12345, proportional:bool=False)
Bootstraps the effect size deltas’ g or proportional delta-delta
Type | Default | Details | |
---|---|---|---|
x1 | ndarray | Control group 1 | |
x2 | ndarray | Test group 1 | |
x3 | ndarray | Control group 2 | |
x4 | ndarray | Test group 2 | |
is_paired | str | None | |
resamples | int | 5000 | |
random_seed | int | 12345 | |
proportional | bool | False | |
Returns | tuple |
delta2_bootstrap_loop
delta2_bootstrap_loop (x1, x2, x3, x4, resamples, pooled_sd, rng_seed, is_paired, proportional=False)
Compute bootstrapped differences for delta-delta, handling both regular and proportional data
compute_bootstrapped_diff
compute_bootstrapped_diff (x0, x1, is_paired, effect_size, resamples=5000, random_seed=12345)
Bootstraps the effect_size for 2 groups.
bootstrap_indices
bootstrap_indices (is_paired, x0_len, x1_len, resamples, random_seed)
Details | |
---|---|
is_paired | |
x0_len | |
x1_len | |
resamples | |
random_seed | parallelization must be turned off for random number generation |
compute_meandiff_jackknife
compute_meandiff_jackknife (x0, x1, is_paired, effect_size)
Given two arrays, returns the jackknife for their effect size.
create_repeated_indexes
create_repeated_indexes (data)
Convenience function. Given an array-like with length N, returns a generator that yields N indexes [0, 1, …, N].
/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/fastcore/docscrape.py:230: UserWarning: Unknown section Keywords
else: warn(msg)
create_jackknife_indexes
create_jackknife_indexes (data)
*Given an array-like, creates a jackknife bootstrap.
For a given set of data Y, the jackknife bootstrap sample J[i] is defined as the data set Y with the ith data point deleted.*
Type | Details | |
---|---|---|
data | ||
Returns | Generator that yields all jackknife bootstrap samples. |